
Files, Strings, and Dictionaries

Mojtaba Alaei

May 4, 2019

Content of the course

Reading a file Line by Line

Consider the following text file:

18.3
92.0
34.0
31.0
12.4
42.1
10.4

To read a file, we first need to open the file. This action creates a
file object, here stored in the variable infile:

infile = open(’data1.txt’, ’r’)

The string ’r’, tells that we want to open the file for reading.
The basic recipe for reading the file line by line applies a for loop
like this:

for line in infile:

#do something with line

Reading a file Line by Line

Instead of reading one line at a time, we can load all lines into a
list of strings (lines) by:

liens = infile.readlines()

This statement is equivalent to:

lines = []

for line in infile:

lines.append(line)

example: Compute the average of the numbers in the file

Try the following program:

infile = open(’data1.txt’, ’r’)
lines = infile.readlines()

mean = 0
for number in lines:

mean = mean + number
mean = mean/len(lines)

gives an error message:

TypeError: unsupported operand type(s) for +: ’int’ and ’str’

The reason is that lines holds each line (number) as a string, not a
float or int that we can add to other numbers.
A fix is to convert each line to a float:

mean = 0
for line in lines:

number = float(line)
mean = mean + number

mean = mean/len(lines)

example: Compute the average of the numbers in the file

Try the following program:

infile = open(’data1.txt’, ’r’)
lines = infile.readlines()

mean = 0
for number in lines:

mean = mean + number
mean = mean/len(lines)

gives an error message:

TypeError: unsupported operand type(s) for +: ’int’ and ’str’

The reason is that lines holds each line (number) as a string, not a
float or int that we can add to other numbers.
A fix is to convert each line to a float:

mean = 0
for line in lines:

number = float(line)
mean = mean + number

mean = mean/len(lines)

example: Compute the average of the numbers in the file

An alternative implementation is to load the lines into a list of
float objects directly:

infile = open(’data1.txt’, ’r’)

numbers = [float(line) for line in infile.readlines()]

infile.close()

mean = sum(numbers)/len(numbers)

print(mean)

While Loop over Lines

When infile.readline() returns an empty string, the end of the file is
reached and we must stop further reading. The following while
loop reads the file line by line using infile.readline():

while True:
line = infile.readline()
if not line:

break
p r o c e s s l i n e

Computing the average of the numbers in the data1.txt file can
now be done in yet another way:

infile = open(’data1.txt’, ’r’)
mean = 0
n = 0
while True:

line = infile.readline()
if not line:

break
mean += float(line)
n += 1

mean = mean/float(n)
print(mean)

Reading a File into a String

The call infile.read() reads the whole file and returns the text as a
string object:

>>> infile = open(’data1.txt’, ’r’)
>>> filestr = infile.read()
>>> filestr
’18.3\n92.0\n34.0\n31.0\n12.4\n42.1\n10.4\n’
>>> print(filestr)
18.3
92.0
34.0
31.0
12.4
42.1
10.4

split() will split the string into words:

>>> words = filestr.split()
>>> words
[’18.3’, ’92.0’, ’34.0’, ’31.0’, ’12.4’, ’42.1’, ’10.4’]
>>> numbers = [float(w) for w in words]
>>> mean = sum(numbers)/len(numbers)
>>> print(mean)
34.3142857143

A more compact program looks as follows:

infile = open(’data1.txt’, ’r’)
numbers = [float(w) for w in infile.read().split()]
mean = sum(numbers)/len(numbers)

Reading a Mixture of Text and Numbers

Many data files contain a mix of text and numbers. The file
rainfall.dat provides an example:

Average rainfall (in mm) in Rome: 1188 months between 1782 and 1970

Jan 81.2

Feb 63.2

Mar 70.3

Apr 55.7

May 53.0

Jun 36.4

Jul 17.5

Aug 27.5

Sep 60.9

Oct 117.7

Nov 111.0

Dec 97.9

Year 792.9

Reading a Mixture of Text and Numbers

How can we read the rainfall data in this file and make a plot of
the values?

def extract data(filename):

infile = open(filename, ’r’)

infile.readline() # skip the f i r s t l ine
numbers = []

for line in infile:

words = line.split()

number = float(words[1])

numbers.append(number)

infile.close()

return numbers

values = extract data(’rainfall.dat’)

from pylab import plot, show

month indices = range(1,13)

plot(month indices , values[:−1])
show()

Reading a Mixture of Text and Numbers

How can we read the rainfall data in this file and make a plot of
the values?

def extract data(filename):

infile = open(filename, ’r’)

infile.readline() # skip the f i r s t l ine
numbers = []

for line in infile:

words = line.split()

number = float(words[1])

numbers.append(number)

infile.close()

return numbers

values = extract data(’rainfall.dat’)

from pylab import plot, show

month indices = range(1,13)

plot(month indices , values[:−1])
show()

Reading a Mixture of Text and Numbers

We can condense the for loop over lines in the file, if desired, by
using a list comprehension:

def extract data(filename):

infile = open(filename, ’r’)

infile.readline() # skip the f irst line
numbers = [float(line.split()[1]) for line in infile]

infile.close()

return numbers

Dictionaries

Suppose we need to store the temperatures from three cities: Oslo,
London, and Paris. For this purpose we can use a list,

temps = [13, 15.4, 17.5]

But it is better to make a dictionary as follows:

temps = {’Oslo’: 13, ’London’: 15.4, ’Paris’: 17.5}
or
temps = dict(Oslo=13, London=15.4, Paris=17.5)

Additional text-value pairs can be added when desired. We can, for
instance, write

>>> temps[’Madrid’] = 26.0

>>> print(temps)

{’Paris’: 17.5, ’Oslo’: 13, ’London’: 15.4, ’Madrid’: 26.0}

Dictionary Operations

The string ”indices” in a dictionary are called keys. To loop over
the keys in a dictionary d, one writes for key in d: and works with
key and the corresponding value d[key] inside the loop:

>>> for city in temps:
... print(’The temperature in %s is %g’ % (city, temps[city]))
...
The temperature in Paris is 17.5
The temperature in Oslo is 13
The temperature in London is 15.4
The temperature in Madrid is 26

We can check if a key is present in a dictionary by the syntax if key
in d:

>>> if ’Berlin’ in temps:
... print(’Berlin:’, temps[’Berlin’])
... else:
... print(’No temperature data for Berlin’)
...
No temperature data for Berlin

Dictionary Operations

Writing key in d yields a standard boolean expression, e.g.:

>>> ’Oslo’ in temps

True

The keys and values can be extracted as lists from a dictionary:

>>> temps.keys()

[’Paris’, ’Oslo’, ’London’, ’Madrid’]

>>> temps.values()

[17.5, 13, 15.4, 26.0]

A key-value pair can be removed by del d[key]:

>>> del temps[’Oslo’]

>>> temps

{’Paris’: 17.5, ’London’: 15.4, ’Madrid’: 26.0}
>>> len(temps) #no of key−value pairs in dictionary
3

Dictionary Operations

Sometimes we need to take a copy of a dictionary:

>>> temps copy = temps.copy()

>>> del temps copy[’Paris’]

this does not affect temps
>>> temps copy

{’London’: 15.4, ’Madrid’: 26.0}
>>> temps

{’Paris’: 17.5, ’London’: 15.4, ’Madrid’: 26.0}

Note that:

>>> t1 = temps

>>> t1[’Stockholm’] = 10.0 # change t1
>>> temps # temps is also changed
{’Stockholm’: 10.0, ’Paris’: 17.5, ’London’: 15.4, ’Madrid’: 26.0}

Example: Polynomials as Dictionaries

Consider the polynomial

p(x) = −1 + x2 + 3x7. (1)

A dictionary can be used to map a power to a coefficient:

p = {0: −1, 2: 1, 7: 3}

A list can, of course, also be used, but in this case we must fill in all
the zero coefficients too, since the index must match the power:

p = [−1, 0, 1, 0, 0, 0, 0, 3]

The following function can be used to evaluate a polynomial repre-
sented as a dictionary:

def poly1(data, x):
sum = 0.0
for power in data:

sum += data[power]∗x∗∗power
return sum

A more compact implementation:

def poly1(data, x):
return sum([data[p]∗x∗∗p for p in data])

Example: File Data in Dictionaries

Consider densities.dat file:

air 0.0012
gasoline 0.67
ice 0.9
pure water 1.0
seawater 1.025
human body 1.03
limestone 2.6
granite 2.7
iron 7.8
silver 10.5
mercury 13.6
gold 18.9
platinium 21.4
Earth mean 5.52
Earth core 13
Moon 3.3
Sun mean 1.4
Sun core 160
proton 2.8E+14

Example: File Data in Dictionaries

Solution:

def read densities(filename):

infile = open(filename, ’r’)

densities = {}
for line in infile:

words = line.split()

density = float(words[−1])

if len(words[:−1]) == 2:
substance = words[0] + ’ ’ + words[1]

else:

substance = words[0]

densities[substance] = density

infile.close()

return densities

densities = read densities(’densities.dat’)

Common Operations on Strings

Substring Specification:

>>> s = ’Berlin: 18.4 C at 4 pm’
>>> s[8:] # f r o m i n d e x 8 t o t h e e n d o f t h e s t r i n g

’18.4 C at 4 pm’
>>> s[8:12] # i n d e x 8 , 9 , 1 0 a n d 1 1 (n o t 1 2 !)

’18.4’

A negative upper index counts, as usual, from the right such that
s[-1] is the last element, s[-2] is the next last element, and so on:

>>> s[8:−1]
’18.4 C at 4 p’
>>> s[8:−8]
’18.4 C’

Searching for Substrings. The call s.find(s1) returns the index
where the substring s1 first appears in s. If the substring is not
found, -1 is returned.

>>> s.find(’Berlin’) # w h e r e d o e s ’ B e r l i n ’ s t a r t ?

0
>>> s.find(’pm’)
20
>>> s.find(’Oslo’) # n o t f o u n d

−1

Common Operations on Strings

To just check if a string is contained in another string:

>>> ’Berlin’ in s:
True
>>> ’Oslo’ in s:
False

Two other convenient methods for checking if a string starts with
or ends with a specified string are startswith and endswith:

>>> s.startswith(’Berlin’)
True
>>> s.endswith(’am’)
False

Substitution. The call s.replace(s1, s2) replaces substring s1 by s2
everywhere in s:

>>> s.replace(’ ’, ’ ’)
’Berlin: 18.4 C at 4 pm ’
>>> s.replace(’Berlin’, ’Bonn’)
’Bonn: 18.4 C at 4 pm’

A nice example:

>>> s.replace(s[:s.find(’:’)], ’Bonn’)
’Bonn: 18.4 C at 4 pm’

Common Operations on Strings

String Splitting. The call s.split() splits the string s into words sep-
arated by whitespace (space, tabulator, or newline):

>>> s.split()
[’Berlin:’, ’18.4’, ’C’, ’at’, ’4’, ’pm’]

Splitting a string s into words separated by a text t can be done by
s.split(t). For example, we may split with respect to colon:

>>> s.split(’:’)
[’Berlin’, ’ 18.4 C at 4 pm’]

With s.splitlines(), a multi-line string is split into lines (very useful
when a file has been read into a string and we want a list of lines):

>>> t = ’1st line\n2nd line\n3rd line’
>>> print(t)
1st line
2nd line
3rd line
>>> t.splitlines()
[’1st line’, ’2nd line’, ’3rd line’]

Common Operations on Strings

Upper and Lower Case. s.lower() transforms all characters to their
lower case equivalents, and s.upper() performs a similar
transforma- tion to upper case letters:

>>> s.lower()
’berlin: 18.4 c at 4 pm’
>>> s.upper()
’BERLIN: 18.4 C AT 4 PM’

Strings Are Constant. A string cannot be changed, i.e., any change
always results in a new string. Replacement of a character is not
pos- sible:

[18] = 5
...
TypeError: ’str’ object does not support item assignment

If we want to replace s[18], a new string must be constructed, for
example by keeping the substrings on either side of s[18] and
inserting a ’5’ in between:

>>> s[:18] + ’5’ + s[19:]
’Berlin: 18.4 C at 5 pm’

Common Operations on Strings

Strings with Digits Only. One can easily test whether a string
contains digits only or not:

>>> ’214’.isdigit()
True
>>> ’ 214 ’.isdigit()
False
>>> ’2.14’.isdigit()
False

Whitespace. We can also check if a string contains spaces only by
call- ing the isspace method. More precisely, isspace tests for
whitespace, which means the space character, newline, or the TAB
character:

>>> ’ ’.isspace() # b l a n k s
True
>>> ’ \n’.isspace() # n e w l i n e
True
>>> ’ \t ’.isspace() # TAB
True
>>> ’’.isspace() # e m p t y s t r i n g

False

Common Operations on Strings

Stripping off leading and/or trailing spaces in a string is sometimes
useful:

>>> s = ’ text with leading/trailing space \n’
>>> s.strip()
’text with leading/trailing space’
>>> s.lstrip() # l e f t s t r i p

’text with leading/trailing space \n’
>>> s.rstrip() # r i g h t s t r i p

’ text with leading/trailing space’

Joining Strings. The opposite of the split method is join:

>>> strings = [’Newton’, ’Secant’, ’Bisection’]
>>> t = ’, ’.join(strings)
>>> t
’Newton, Secant, Bisection’

Example: Reading Pairs of Numbers

Make a file (for example read pairs1.dat) with following format:

(1.3,0) (0,1) (0,−0.01)
(−1,2) (3,−1.5) (1,0)
(1,1) (10.5,−1) (2.5,−2.5)

We want to o read this text into a nested list pairs such that
pairs[i] holds the pair with index i, and this pair is a tuple of two
float objects.
Solution:

lines = open(’read pairs1.dat’, ’r’).readlines()
pairs = [] # l i s t o f (n 1 , n 2) p a i r s o f n u m b e r s

for line in lines:
words = line.split()
for word in words:

word = word[1:−1] # s t r i p o f f p a r e n t h e s i s

n1, n2 = word.split(’,’)
n1 = float(n1); n2 = float(n2)
pair = (n1, n2)
pairs.append(pair) # a d d 2− t u p l e t o l a s t r o w

Example: Reading Pairs of Numbers

How to read the following data (’xyz.dat’):

x=−1.345 y= 0.1112 z= 9.1928
x=−1.231 y=−0.1251 z= 1001.2
x= 0.100 y= 1.4344E+6 z=−1.0100
x= 0.200 y= 0.0012 z=−1.3423E+4
x= 1.5E+5 y=−0.7666 z= 1027

Solution:

infile = open(’xyz.dat’, ’r’)
coor = [] # l i s t o f (x , y , z) t u p l e s

for line in infile:
words = line.split(’=’)
x = float(words[1][:−1])
y = float(words[2][:−1])
z = float(words[3])
coor.append((x, y, z))

infile.close()
import numpy as np
coor = np.array(coor)
print(coor.shape, coor)

Example: Reading Pairs of Numbers

How to read the following data (’xyz.dat’):

x=−1.345 y= 0.1112 z= 9.1928
x=−1.231 y=−0.1251 z= 1001.2
x= 0.100 y= 1.4344E+6 z=−1.0100
x= 0.200 y= 0.0012 z=−1.3423E+4
x= 1.5E+5 y=−0.7666 z= 1027

Solution:

infile = open(’xyz.dat’, ’r’)
coor = [] # l i s t o f (x , y , z) t u p l e s

for line in infile:
words = line.split(’=’)
x = float(words[1][:−1])
y = float(words[2][:−1])
z = float(words[3])
coor.append((x, y, z))

infile.close()
import numpy as np
coor = np.array(coor)
print(coor.shape, coor)

Writing Data to File

outfile.write(s), which writes a string s to a file handled by the file
object outfile.
Writing to a file demands the file object f to be opened for writing:

w r i t e t o n e w f i l e , o r o v e r w r i t e f i l e :

outfile = open(filename, ’w’)
a p p e n d t o t h e e n d o f a n e x i s t i n g f i l e :

outfile = open(filename, ’a’)

An example:

data = [[0.75, 0.29619813, −0.29619813, −0.75],
[0.29619813, 0.11697778, −0.11697778, −0.29619813],
[−0.29619813, −0.11697778, 0.11697778, 0.29619813],
[−0.75, −0.29619813, 0.29619813, 0.75]]

outfile = open(’tmp table.dat’, ’w’)
for row in data:

for column in row:
outfile.write(’%14.8f’ % column)

outfile.write(’\n’)
outfile.close()

	Reading files
	Dictionaries
	Strings

